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We consider the disorder-induced fluctuations of a directed polymer confined between two walls with
attractive contact potentials. For two-dimensional systems we exploit the mapping to a one-dimensional
driven lattice gas with open boundaries to obtain exactly the phase diagram as well as critical exponents
and scaling functions characterizing the unbinding transitions. The competition between two attractive
walls gives rise to coexistence fluctuations in the bound phase, corresponding to the shock fluctuations in
the lattice gas. Scaling arguments are used to generalize these results to higher dimensions and different

confinement geometries.
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1. INTRODUCTION

The interactions of flexible manifolds with extended
defects such as walls or lines give rise to a rich variety of
unbinding transitions [1]. These transitions underlie
physical phenomena as diverse as wetting (the unbinding
of an interface from a wall) and the depinning of a flux
line from a screw dislocation in a type II superconductor
[2]. They are governed by the competition between an at-
tractive, localizing defect potential, and thermal fluctua-
tions or bulk disorder which encourage the wandering of
the manifold away from the defect.

In the present paper we study a directed polymer—an
oriented, flexible line—subject to uncorrelated bulk dis-
order, and confined between two walls which exert attrac-
tive short range forces. The directed polymer in a ran-
dom medium (DPRM) has generated much interest as a
toy problem of disordered systems [3-5]. More recently,
it has been studied extensively as a simple model for sin-
gle flux lines in disordered superconductors; in that con-
text the competition between extended defects and bulk
disorder is of great importance [2,6].

Perhaps the most intriguing feature of the DPRM is its
equivalence to stochastic growth models and (in one
transverse dimension) driven lattice gases [S5]. This map-
ping between a nonequilibrium, time-dependent process
and an equilibrium system with frozen disorder is con-
ceptually very simple: Starting from a d-dimensional
nonequilibrium system, the time axis is included in the
description as the (d +1)th coordinate; the noise his-
tories that govern the stochastic time evolution are thus
transformed into a random potential in (d +1)-
dimensional space, and the time evolution itself is encod-
ed (in a way to be specified below) by optimal paths (or
polymers) directed along the time axis. The mapping can
be formulated both in the continuum [7-9] and, via the
probabilistic concept of first passage percolation
[5,10,11], on the level of discrete lattice models.

Recasting the (1+1)-dimensional DPRM into the
lattice-gas language, it is found that the two walls
confining the polymer correspond to the free ends of the
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one-dimensional lattice on which the stochastic dynamics
evolves, and the contact potentials govern the rates at
which lattice-gas particles are injected at one end of the
system, and removed at the other [12]; the lattice gas is
totally asymmetric, i.e., particles hop in one direction
only. In a remarkable series of papers, Derrida, Domany
and co-workers [13-15] recently presented a complete,
exact solution for this class of models. Here, our primary
goal is to interpret the lattice-gas results in terms of the
disorder-induced fluctuations of a directed polymer
confined between two walls. Our motivation is twofold.
First, we provide a new perspective on- the various
boundary-induced phase transitions [12] observed in the
driven lattice gas, by showing that they are, in essence,
manifestations of unbinding transitions [16]. Second, by
exploiting the exact lattice-gas solution we confirm and
extend previous (nonrigorous) work on disorder-induced
unbinding in two dimensions [1,17-19].

Surprising effects arise in the bound phase when the at-
tractive potential has the same strength at both walls:
Fluctuating back and forth across the strip, the directed
polymer induces an effective attraction between the walls
which decays as a power of the wall separation; in the ab-
sence of disorder the corresponding dependence is ex-
ponential [20]. Within the DPRM picture, these and oth-
er features of the lattice-gas solution can be derived from
simple scaling arguments, which are easily extended to
higher dimensions and different confinement geometries.
In higher dimensions the mapping to driven lattice gases
is lost, however our results still have interesting implica-
tions for the growth of interfaces with nontrivial bound-
ary conditions [21].

The paper is organized as follows. We begin by recal-
ling the mapping of the DPRM to growing interfaces and
driven lattice gases. Next, in Sec. III, we show how the
phase diagram and the localization length for the unbind-
ing transition can be extracted from the lattice-gas solu-
tion. We compare the results with the behavior at
thermal unbinding in the same geometry, which is ob-
tained from the solution of the noiseless Burgers equation
or, equivalently, the mean field theory of the driven lat-

104 ©1994 The American Physical Society



50 DISORDER-INDUCED UNBINDING IN CONFINED GEOMETRIES 105

tice gas [12,13]. In Sec. IV we focus on the behavior in
the bound phase with attractive walls of comparable
strength, which is related to the shock fluctuations of the
lattice gas. We develop scaling arguments that reproduce
and generalize the exact results, and emphasize that the
bulk disorder is in fact irrelevant for these effects. Sec-
tion V summarizes our findings and provides an outlook
onto the unbinding transition in higher dimensions. The
relevant properties of the exact solution of the lattice-gas
problem are derived in the Appendix.

II. THREE EQUIVALENT PROBLEMS

In this section we review the mapping of the DPRM to
growing surfaces, and, in the special case of (1+1) di-
mensions, the connection of the two to the driven lattice
gas. We are particularly interested in finding conditions
on the growing surface and driven lattice gas that are
equivalent to the effect of confining walls in the DPRM.
For this purpose it is useful to examine first a lattice ver-
sion of the directed polymer problem at zero tempera-
ture.

A. Mapping among lattice models

Consider a square lattice tilted by 45° as shown in Fig.
1. Let i and j be the horizontal and vertical coordinates
of a site, respectively, measured in units of 1V2 times the
lattice spacing. Each lattice site (i, ) is assigned indepen-
dently a random energy €(i,j) drawn from a distribution
P_(x). A directed polymer is represented by an upward-
directed path on the lattice. The energy of the directed
polymer is simply the sum of the site energies on the path
[3]. Denoting by E(i,j) the ground state energy of the
directed polymer with its upper end fixed at site (i, ), it is
easy to see that the following equality holds [3,22],

E(i,j)=€li,j)+min{E(i —1,j —1),E(i +1,j —1)} .
(2.1

Suppose now the directed polymer is confined by hard
walls located at i =0 and i =L +1>0. Equation (2.1)
still holds for 2<i<L —1,but at i =1 and i =L it is re-
placed by

FIG. 1. Sketch of the two-dimensional lattice used in this
work. The bold line indicates a directed polymer configuration.

E(1,j)=€(1,j)+E(2,j—1),

E(L,j)=e(L,j)+E(L —1,j—1). (2.2)

Equations (2.1) and (2.2) remain valid when the distribu-
tion P (x) is site dependent.

Let us now turn to a surface growth problem known as
the single-step model on the square lattice [23]. A sur-
face configuration is a spanning path from left to right,
specified by the column heights j=h(i),i=1,...,L.
The condition of no overhangs implies A(i+1)
—h(i)==x1. The growth process can be formulated as
follows. Suppose that, at a given moment, the condition
h(i)=h(i—1)—1=h(i+1)—1 is fulfilled. Growth
h(i)—>h(i)+2 takes place in the next time interval dt
with a probability dt. A separate description is needed
for the boundary columns. Of particular interest here is
that of free boundaries. In this case, column 1 is ready to
grow if h(1)=h(2)—1. For reasons which will become
clear later, we assign a growth probability a dt in a time
interval dt to this column. Similarly, column L is ready
to grow if h(L)=h(L —1)—1, with a growth probability
Bdt in a time interval dt.

Denoting by #(i,j) the time at which the surface
reaches site (i,j), the following relation is observed to
hold:

t(, )=7(i,j)+max{t(i—1,j —1),e (i +1,j—1)} . (2.3)

Here 7(i,j) is the time it takes for the growth
h (i)=j —2—h(i)=] to occur, starting from the moment
when both sites (i —1,j —1) and (i +1,j —1) are on the
surface, as given by the second term on the right-hand
side of (2.3). For the boundary columns i =1 and L, Eq.
(2.3) is replaced by
t(1,j)=7(1,j)+¢t(2,j—1),
t(L,j)=7(L,j)+et(L —1,j—1). 2.4

From the definition of the growth model we see that
7(i,j) is a stochastic variable independent from site to
site. The distribution of 7(i,j) for 2<i <L —1 is given by

P (x)=e™*. (2.5)
At the boundaries, 7(1, j) is distributed according to

P (x)=ae™ ™, (2.6)
while 7(L, j) is distributed according to

P, (x)=Be P~ 2.7

The attentive reader would realize immediately the
parallels of the DPRM and the single-step model defined
above. In fact, the two are formally completely
equivalent if we make the following identifications:

€(i,j)=—7(i,j), E(i,j)=—1t(i,j). (2.8)

The distribution of the site energies € in the bulk is easily
obtained from (2.5). At the boundary column i =1, we
write €(1,j)=€g(1,j)+ V (j), where €5 obeys the distribu-
tion of site energies in the bulk. Using (2.5) and (2.6) it is
easy to verify that, for a <1, the distribution of ¥ <0 is
given by
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Py(x)=ad(x)tal(l—a)e™ . (2.9)

Thus the case a <1 corresponds to an attractive potential
next to the left wall. Similarly, the case 8 <1 corresponds
to an attractive potential next to the right wall.

The surface height 4 (i,t) in the single-step model can
(in principle) be obtained from the solution of the direct-
ed polymer problem by inverting the equation

E(i,h)=—t . (2.10)

At long times (or equivalently, for long polymers), one
may write, to leading order, E (i,j)=~e,j and h (i,t)=~vt.
Here e is the ground state energy per unit length of an
infinite directed polymer, and v is the steady-state growth
velocity. From (2.10) we obtain

v=—1/e, . 2.11)

Finally, we recall the lattice-gas analogy of the single-
step model [5]. Let

o, =[1+h()—h(i+1)]/2 (2.12)

denote the occupation number of site i on a one-
dimensional chain, i =1,...,L—1. Due to the single-
step constraint, o; takes only two possible values, O and
1. The condition for growth of column i corresponds to
o;_1=1and o;=0. Growth h(i)—>h(i)+2 changes the
occupation numbers to o; _ ;=0 and o, =1, i.e., a particle
jumps from site i —1 to site i on the chain. The probabil-
ity for the jump to occur in a time interval dt is dt. At
site 1, growth h (1)—h(1)+2 corresponds to feeding in a
particle from outside, and this is done with a probability
adt in a time interval dt. Similarly, growth
h(L)—h(L)+2 at column L corresponds to taking away
a particle at site L —1 on the chain, which is done with
probability B dt in a time interval dt. This is precisely the
model studied in Refs. [12-15]. Knowing the lattice-gas
configuration, one can easily reconstruct the surface
configuration using
i—1
h()=h(1)+ 3 (1—20,) .
k=1

(2.13)

Since for every lattice-gas jump the surface advances by
two lattice units, the lattice-gas current is related to the
growth velocity by J=v /2, and to the DPRM ground
state energy through

J=—(2e,)"!. (2.14)

The mapping between the DPRM at zero temperature
and a certain class of surface growth problems carries
through to higher dimensions (see Ref. [25]). As the gra-
dient of the height is no longer a scalar in higher dimen-
sions, these surface growth models do not coincide with
direct generalizations of the one-dimensional driven lat-
tice gas [5].

B. Continuum formulation

Although the models on lattice discussed above have
the virtue of being easily implementable on a computer
and, in the case of the lattice-gas problem, able to afford

an exact solution, additional physical insights can be
gained from the continuum formulation of these prob-
lems. In this language, the configuration of the directed
polymer is specified by its transverse displacements x(¢),
where ¢ is the coordinate along the preferred direction.
The energy of the directed polymer is given by

dx

2
i +n(x,2)+V(x)

= (g lX
H= [ dt\ S (2.15)

Here y is the line tension, 7(x,¢) is a Gaussian random
potential with zero average and covariance

(n(x,t)m(x’,t")) =2D8%x—x")8(t —1t') , (2.16)

and V(x) is a t-independent potential.
The partition function of the directed polymer with its
upper end fixed at (x,?) is given by

Z(x,t)=Y exp(—Hp/kgT) , (2.17)
P

where the sum is over all possible configurations P of the
directed polymer ending at (x,¢). Using (2.15), it is easy
to verify that Z satisfies the Schrodinger equation in
imaginary time,

. (kpT)?
ot kpT 2y

Vi4q(xt)+V(x)|Z . (2.18)

Under the Hopf-Cole transformation Z =exp(—F /kgT),
one arrives at the Kardar-Parisi-Zhang (KPZ) equation
for the free energy F(x,t) [7,8],

BF _ksT
ot 2y

In the context of surface growth, F has the interpretation
of surface height. An attractive potential (¥ <0) corre-
sponds to a reduced growth rate, while a repulsive poten-
tial (¥ > 0) corresponds to an enhanced growth rate [24].
In the (1+1)-dimensional case, the equation satisfied by
VF is known as the noisy Burgers equation whose con-
nection to the driven lattice-gas problem has been well
documented [26].

VZF——217(VF)2+ Vix)+nixt) . (2.19)

III. UNBINDING TRANSITIONS

A. Phase diagram

The thermodynamic properties of the system are deter-
mined by the ground state energy per unit length, e,
which is related to the lattice-gas current through (2.14).
We discuss here the dependence of this quantity on the
boundary parameters a and (3, keeping in mind that the
average boundary energies are (e(1,j))=—1/a,
(e(L,j))=—1/B, while the bulk energy is fixed at
(eli,j))=—1.

It is shown in the Appendix that the ground state ener-
gy can be written as the ratio of two matrix elements [Eq.
(A2)], each of which has three contributions I,, I, and I,
[Eq. (A6)]. For a,B>1/2,I, ~4% is the only contribution
[cf. (A15)], while for a <},a < the dominant term is
I,~[a(1—a)]™t [Eq. (A10)] and for B<1,B<a the
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term I;~[B(1—PB)]~L dominates [Eq. (A11)]. Using
only these leading behaviors we obtain [14,15]

-2, a,B2%}
eo={—[2a(1-a)]”!, a<l,a<B 3.1
—[280-B)]7", B<}.B<a,

a result which also follows from mean field approxima-
tions [12,13] and simple physical considerations [12,15]
applied to the lattice gas.

The phase diagram is depicted in Fig. 2. In the upper
right part a,8> ] the polymer is unbound, and conse-
quently e, is independent of the boundary energies. At
a=1 (B=1) the polymer undergoes an unbinding transi-
tion at the left (right) wall. When a <1 and B<1 the po-
lymer is bound at the more attractive wall, and the
ground state energy depends only on the contact poten-
tial of that wall. The unbinding transitions are of second
order, in the sense of continuous first derivatives
dey /d(a,B), and the singular part of the ground state en-
ergy vanishes quadratically as the transition is ap-
proached from the bound side, in agreement with
Kardar’s replica calculation [17]. The singularity is the
same as the free energy singularity in thermal unbinding
[1,17]. In the lattice-gas context this corresponds precise-
ly to the fact that the ground state energy (3.1) is given
exactly by the mean field approximation (cf. Sec. III C).

The additional feature due to the presence of two walls
is the transition along the line a=p< 1, which is a coex-
istence line connecting the two bound phases. Despite be-
ing of first order [in the sense of a discontinuous first
derivative of ey(a,B)], this transition is associated with a
diverging correlation length, as will be demonstrated in
the following section. The underlying physics is ex-
plained in Sec. IV.

B. Confinement energies and localization lengths

In order to more fully characterize the unbinding tran-
sitions and extract the appropriate diverging length scales

FIG. 2. Phase diagram. Full lines are second order unbind-
ing transitions. Along the bold line two bound phases coexist.
At the dashed line a+pB=1 the confinement energy changes its
sign.

we need to go beyond the thermodynamic description
and consider fluctuation quantities. We have found that
the most convenient quantity for this purpose is the
confinement energy, i.e., the shift Ae(L) in the ground
state energy e, due to the lateral confinement of the poly-
mer to a strip of width L. The length of the polymer
remains infinite; this is necessary because the exact solu-
tion of the lattice-gas model [ 13—-15] covers only the sta-
tionary (¢ — o ) regime.

Quite generally, the lateral confinement of a flexible
line on a scale L requires an energy cost Ae(L)~L ™"
with 7=2(1—¢§) /£ in terms of the wandering exponent §
of the line [27]. The exact (1+1)-dimensional DPRM
wandering exponent =1 [5,8] thus implies 7=1, and we
expect, to leading order in 1/L,

Ae(L)=e0(L)—eo(oo)z% . (3.2)

The coefficient ¢ in (3.2) is universal, in the following
sense: Simple considerations [21] applied to the continu-
um Eq. (2.19) in (1+1) dimensions show that the leading
finite size correction to the free energy per unit length
fo=lim,_, _{9F /dt) is of the form

= (3.3)

where the ratio D /kzT is a model-dependent quantity
that can be determined from certain correlation functions
[28]; for the present model D /kyT= —ey(0)=2. In
contrast, the amplitude ¢ should depend only on the type
of lateral boundary conditions. For periodic boundary
conditions (confinement on a cylinder) it has been shown
that ¢ =1 [21].

In the unbound phase, Ae(L) can be determined by ex-
panding (A15) for large u,v, using the asymptotics (A21)
of the scaling function F. The result is
eo=—2[1—3L "4+ 0(L %)), which is precisely of the
form (3.2) with ¢ =2. Moreover, this value is seen to ap-
ply to the whole unbound phase a,8> 1 [29]. At the un-
binding transitions (@ = < or B=1 <a) one has to set
u=0 or v=0 in (Al5), which leads to
eo==—2[1—1L"'+O(L "?)]; hence ¢ =1 if one of the
two walls is at the critical point.

In the bound phase the confinement due to the second
wall should be less important, and we expect the
confinement energy to vanish rapidly with increasing L.
More precisely, it should behave as Ae ~exp(—L /&),
where £ is the localization length of the polymer. To
compute the finite size correction for a <1 <p (the case
B<1<a is of course completely analogous), we need to
include both the leading (I,) and subleading (I, ) contri-
butions to the matrix elements in the evaluation of (A2).
For large L, the result can be written as

—L/§

a

Ao~ 1 (B—a)a+B—1)
2Vr a(l—a)(1—2a)(1—28)? L3

where we have introduced the localization length

&,=(—In[4a(1—a)])!. (3.5)

, (3.4)
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Upon approaching the transition, a— 1, but keeping
L >>£,, (3.4) reduces to

£
L

172

1 1 ~L/E,

>3l

and the localization length diverges quadratically,
£,~(a,—a)”¥ with =2 and a,=1. This provides the
first rigorous confirmation of the value ¥=2 of the un-
binding exponent predicted by the replica analysis [17] as
well as by the necklace model [27], which suggests that
Y=¢§/(1—¢) in general. For §,~L (3.6) crosses over to
the 1/L-behavior characteristic of the unbound phase.

It is interesting to note that the diverging localization
length plays a role also when the unbinding transition is
approached from the unbound side. As was pointed out
above, eq= —2(1—%L_') in the unbound phase, while
eo=~—2(1—4L"~ 1) at the transition. The crossover is de-
scribed by, for £,>>1 and £z=—In"'[48(1—B)]
<o L,

A (3.6)

=L | 72V L/EF (V' L/E,)
€9~ — - —
0 2L l—ﬂl/zF(\/L/ga)

(3.7

with the scaling function F defined in (A18).

We are now prepared to explain the significance of the
dashed line a+pB=1 in the phase diagram (Fig. 2).
Along that line, the steady state of the lattice gas be-
comes trivial in the sense that it is indistinguishable from
the state of a finite piece of an infinite system [14,15]. In
particular, the confinement energy Ae vanishes identical-
ly for any strip width L, as can also be seen from the
asymptotic expression (3.4). Our interpretation of this
phenomenon is as follows: When a+B=1, the potential
of the confining wall matches that of the localizing wall
such that the probability for the polymer to be located at
the confining wall takes precisely the value it would take
in a semi-infinite geometry. As we shall see in Sec. III C,
the same effect appears in thermal unbinding.

For a+B<1 the confinement energy is negative [cf.
Eg. (3.4)]. Consequently, the effective force —de, /3L ex-
erted by the fluctuating polymer on the confining walls
becomes attractive. In particular, this is true in the re-
gime a,B <1, where the dominant contributions to the
matrix element (A6) are I, and I;. Using the exact ex-
pressions (A10) and (A11l) we obtain, for large L and
a<p,

Ae=— (1=2B)(B—a)1—B—a)
2(1—2a)a(l—a)B(1—PB)

e LEro(e H e

)

(3.8)

where we have introduced a new length scale £ defined by

i |- (3.9)

As pointed out by Schitz and Domany [15],

El=¢ ’—55 !, where §o,p are the localization lengths

associated with the two bound phases which meet at the
coexistence line, defined through (3.5). This makes it pos-
sible for £ to diverge close to coexistence, despite the fact
that the localization lengths in both phases remain finite.
Indeed, in the limit a—B—0 we have

z a(l—a) _ -1
§~——(1_2a)([3 a) (3.10)
and (3.8) reduces to, for £ << L,
N____.l___~—l —L/E
Ae ~ za(l_a)g e . (3.11)

At coexistence, =B <1, the ground state energy is
given exaLCEIy by (up to exponentially small corrections of
order e “

1 20(1—a)+L(1—2a)?
2a(1—a) | 2a(l—a)+(L —1)(1—2a)? |

(3.12)

€= —

Far away from the critical point a=1, i.e., for §, <<L,
this reduces to a confinement energy

1 1
2a(l1—a) L’

which (up to the sign) is reminiscent of the 1/L behavior
in the unbound phase. However, we will show in Sec. IV
that the origin of the confinement energy is quite different
in the two cases. In particular, in higher dimensions the
two quantities are expected to scale with different powers
of L. Approaching the critical point a=f=1 along the
coexistence line deviations from (3.13) show up when
E,~(1—2a)7? ~L.

Ae= (3.13)

C. Thermal unbinding and mean field theory

The results of the previous section can be put into per-
spective by comparing them to the thermal unbinding of
a directed polymer (or a one-dimensional interface)
confined between two walls. This problem is most con-
veniently treated in the continuum formulation of Sec.
II1B. In the thermal case the random potential 7(x,?) in
(2.19) is omitted. Moreover, for simplicity we replace the
effect of the wall potential ¥ (x) by the boundary condi-
tions [1]

Z'0,0)/Z(0,)=—13", Z'(L,t)/Z(L,H=I" (3.14)

for the restricted partition function, where />0 (I, >0)
when the polymer is bound at x =0 (x =L) and [/, <0
(I; <0) is the unbound case. In the bound regime this
mimics the exponential decay of the partition function
outside of the interaction range of the wall potential.
Elementary quantum mechanics [1] shows that
lo.. ~|Vo, —V.|™" as the potential strength approaches
its critical value from above. Close to the transition the
boundary parameters in (3.14) are therefore related to
those of the disordered lattice problem through
Ig'~1—a, I '~1—PB[see (3.17)].

In the stationary regime, t— oo, the free energy per
unit length f,=0F /9t is determined by the stationary
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solution of (2.19) with =¥V =0 and the appropriate
boundary conditions. The problem further simplifies by
introducing the function ¥ =d8F /dx. This quantity is in-
dependent of time and satisfies

du

kBTK=u2+2'yfo (3.15)
with the boundary conditions u (0)=u,=kzT/l, and
u(L)=u; =—kgT/l;. Hence f, is given implicitly as a
function of L, /;, and I; through the relation

YL du
L=kyT —_—. (3.16)
B f“o u+2yfo

The behavior in the thermodynamic limit is obtained
by tuning f, such that the integrand on the right-hand
side of (3.16) diverges, either at ¥ =0 or at one of the
boundaries. The resulting phase diagram is identical to
that of the disordered system (Fig. 2) if we set

a=l—ug, B=l+u, . 3.17)

The unbound phase occupies the region u; >0>u,,
where f, =0 in the thermodynamic limit. The unbinding
transition at x =0 (x =L) occurs along the line
uy=0,u; >0 (u; =0,uy <0). The free energy is equal to
fo=—ub/2y=—(kyT/1,))*/2y when the polymer is
bound at x =0 (in the region uy > 0,u; > —u,), and equal
to fo=—(kgT /I, )*/2y for u; <O,u; < —u,. As be-
fore, the free energy vanishes quadratically (in I, 1 and
hence in [V, —V,|) at the transition. The coexistence
line is located at u,= —u; >0. Finally, the significance
of the dotted line uq=u; is obvious from (3.16): Along
that locus, the solution of (3.15) becomes trivial,
fo=—u}/2y with no finite size corrections.

The finite size corrections to the free energy are easily
computed from (3.16). In the unbound phase we find a
power-law confinement energy

C‘ﬂ'kBT
L

1

2
Af=fo(L)—foloo )=5 , (3.18)

where ¢ =1 for uy<0<u; and ¢ =1 when one of the
two walls is at its unbinding transition. Note that in the
latter case the confinement energy is simply that of a
completely unbound polymer in a strip of width 2L, as
could have been guessed from the boundary conditions
(3.14); the corresponding result for the disordered system
(Sec. III B) does not have such a straightforward interpre-
tation. The 1/L? decay of Af conforms to the scaling
prediction 7=2(1—¢§)/£=2 for thermal roughening [27].

When the polymer is bound at x=0,u,>0, the
confinement free energy is exponentially small in L /I,
and given by

(kgT) 1 +I, o 27

Af=—2
4 vy 1=l

(3.19)

In terms of (3.17) the dimensionless prefactor in (3.19) is
equal to (1—B—a)/(B—a). Two features are
noteworthy. First, Af changes sign at the dotted line in

Fig. 2 (I =—1, in present units), signaling the transition
from repulsive to attractive confinement effects. Second,
the prefactor of (3.19) diverges upon approaching the
coexistence line where I} =I[,>0. At coexistence,
uy=—uy >0, the evaluation of (3.16) yields

(kpT)? _
2 32 . L/lo'
vl

Comparison with the exponential factor of (3.19) shows
that the effective system size at coexistence is L /2 or,
equivalently, the effective localization length is doubled.
Moreover, we see that the crossover from (3.19) to (3.20)
occurs when L ~E with

21,
IL—1,

Af=— (3.20)

E=lyn

. (3.21)

Thus, a diverging length scale can be associated with the
coexistence line both in thermal and disorder-induced un-
binding, however here the power-law divergence of & de-
rived in Sec. III B [Eq. (3.10)] is replaced by logarithmic
behavior. As will be shown in Sec. IV B, the difference
can be traced back to the fact that the coexistence fluc-
tuations in the thermal case are of entropic origin.

Finally, we show that the present treatment of thermal
unbinding is completely equivalent to the mean field
theory of the driven lattice gas [12,13,30,31]. In its con-
tinuum formulation [12,30,31] the mean field theory
starts from an expression for the total current as a func-
tion of the local density p(x)={o, ) [cf. (2.12)],

J=p(1—p)—DMF%p . (3.22)
Here the first, systematic term is known to become exact
in the infinite bulk system, while the second term
represents a phenomenological diffusive contribution
[12,30]. The boundary rates a and B essentially fix the
boundary densities through p(0)=a, p(L)=1—8. To-
gether with these boundary conditions the stationarity
condition (3.22) determines the current as well as
the density profile. With the idenfications }—p—u,
Dyg—kpT, and J—+—2yf,, this problem reduces to
the one solved above.

We note in passing that the correct scaling properties
of the disordered system can be obtained from a modified
mean field theory in which the diffusion constant D, be-
comes scale dependent [12]. The one feature which can-
not be reproduced by this heuristic method is the
behavior close to the coexistence line a=p. This is the
topic of the following section.

IV. COEXISTENCE FLUCTUATIONS

The comparison with the thermal case in the preceding
section indicates that the behavior of the disordered mod-
el close to the coexistence line a=p depends essentially
on the presence of randomness. More precisely, we will
argue that the crucial ingredient are the disorder fluctua-
tions close to the localizing wall.
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A. Shock fluctuations

In the lattice-gas context the behavior on the coex-
istence line a=p is characterized by shock fluctuations:
Typical configurations consist of regions of low density
o;=~a<4 for 0<i<x,, separated by a microscopically
sharp shock from the high density region x,<i<L,
where 0, ~1—a> 1 [14,15,32]. The shock position x, is
found with equal probability anywhere in the system.
Consequently, the averaged density profile increases
linearly from {o,)=a to {o,)=1—a, however the
average is not representative of typical configurations
[14].

From (2.13) we recognize that the corresponding typi-
cal height profiles are roof shaped, with a maximum at
the shock position x,. The behavior of the directed poly-
mer follows from the observation that, according to
(2.10), the height configurations j =h(i,t) are lines of
constant ground state energy E(i,j)= —t. Plotting subse-
quent height configurations we therefore map out the
ground state energy landscape (Fig. 3). The shock posi-
tion x, traces out the watershed which divides the
domain of attraction of the left wall i =1 from that of the
right wall i =L. Roughly speaking, the global energy
minimum for fixed j — i.e., the position of the end point
of the globally optimal path of length j —resides near the
right wall when x, <L /2, and near the left wall when
xo>L /2. As the shock position wanders, the energy
minimum occasionally switches from one wall to the oth-
er; since the shock position performs a random walk with
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4000

3900

400

FIG. 3. The figure shows 20 subsequent snapshots of a
single-step interface of length L =500, taken at time intervals
At=200. The boundary parameéters were a==0.1. These in-
terface configurations can be viewed as level sets in the ground
state energy landscape of the DPRM. The energy decreases
from E=—t=—20000 along the bottom configuration to
E=—24000 at the top. The dashed line maps out the
watershed between the domains of attraction of the left and the
right wall; in this section of the lattice the polymer remains lo-
calized at the right wall.

a diffusion constant of order unity, the switching time
scale is of the order L? (Fig. 4).

The physical origin of the lattice-gas shock fluctuations
is the imbalance between the number of particles injected
at i=1, and the number removed at i=L. In the
language of the directed polymer the phenomenon arises
from the relative energy fluctuations between the two
bound phases: While their average energies are degen-
erate, fluctuations are caused by the (essentially one-
dimensional) disorder along each of the two localizing
grooves in the energy landscape. This observation is
sufficient to understand most of the scaling laws found in
Sec. ITII B.

B. Scaling arguments

Consider first the behavior slightly off coexistence,
with 8> a, so that the ground state configuration is local-
ized near i =1. We estimate the energy of a kinklike ex-
citation, in which a segment of length L, is moved across
the strip and attached to the right wall at i =L (Fig. 5).
The energy cost consists of a term of order (eg—e, )L,
and two crossing contributions of order L, where e, (eg)
is the energy per unit length associated with the bound
phase at the left (right) wall. From (3.1) we have

e—e (B—a)(1—2a)
Aome™ a1—a)?

for a—B—0. The polymer incurs an energy gain if the
fluctuating part of the effective wall potentials favors the
right wall over the left in the region occupied by the kink.
Due to the one dimensionality of the wall, the gain is of
order L’?. Thus, the kink energy can be written as

4.1

Ekink=(e3_ea)Ll|+2€1L_e2L|l|/2 , 4.2)

where, away from the unbinding transition, e; and e, are
positive coefficients of order unity. Minimizing with
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FIG. 4. Shock fluctuations. The figure shows the time evolu-
tion of the position of the maximum (dashed line) and the
minimum (full line) of roof-shaped interface configurations of
the kind shown in Fig. 3, however for L =200. The two curves
approximately follow the lattice-gas shock position and the po-
sition of the global ground state of the DPRM, respectively.



50 DISORDER-INDUCED UNBINDING IN CONFINED GEOMETRIES 111

Ly

FIG. 5. Sketch of a kink excitation of a polymer bound at the
(slightly more attractive) left wall.

respect to L we obtain the optimal kink size
_ eja*1—a)
" B—a)1-20)

Clearly a kink will form only if E;, , evaluated at the op-
timal kink size, is negative. This occurs when L <L,
where

(4.3)

_ (e} /e))a*(1—a)
L 4 B—a)(1—2a)

can be identified with the correlation length £ introduced
in Sec. IIIB. We have thus recovered the divergence
&~|B—al| ! derived in (3.10).

Next we determine the confinement energy at coex-
istence. We expect the optimal configuration of a poly-
mer of length j to consist of N kinks and antikinks of
length L with NL =j. Each kink incurs an energy gain
of order L|’% and an energy cost of order L. The total
energy change per unit length, as compared to a
configuration localized near a single wall, is then

(4.4)

Ae=e,L/L,—e, L' . 4.5)
The optimal kink size is now
L||=4(el/e2)2L2 (4.6)

and inserting into (4.5) we obtain an attractive
confinement energy of order 1/L,

-_1
Ae= n

2
1

e L |’ 4.7

in agreement with (3.13).

It should have become clear that these arguments do
not involve the disorder in the bulk of the system. Bulk
properties enter only through the coefficient e, in (4.2),
(4.5), which expresses the fact that the average energy of
the bulk exceeds that of the boundaries. Consequently,
the coexistence fluctuation effects should persist even in
the absence of bulk disorder, as long as the wall poten-
tials have a random component. This expectation is cor-

roborated by the work of Schiitz [33], who studied a
lattice-gas model where particles are randomly injected
and removed at rates a and S, respectively, but move
deterministically in the bulk. Along the lines of Sec. IT A
this maps onto a zero temperature directed polymer
problem with random site energies along the boundary
rows i =1 and i =L, and fixed (nonrandom) energies in
the bulk. Clearly in the absence of bulk disorder (and
thermal fluctuations) there are no unbinding transitions
and the whole parameter space 0 <a,B=1 is occupied by
the two localized phases, analogous to the lower left
corner of Fig. 2. Nevertheless, close to the coexistence
line a=p the results of Schiitz reduce exactly to the
asymptotic expressions (3.11) and (3.13), if the bulk ener-
gy eo=min(—1/2a,—1/2pB) and the correlation length
&=In"'(B/a)=~a/(B—a) appropriate for Schiitz’s model
are inserted. Thus these results appear to posses a certain
degree of universality.

We now turn to the behavior of the coexistence fluc-
tuations as the unbinding transition is approached along
the coexistence line a =g < J (Fig. 2). The coefficients e,
and e, in (4.5) are expected to become singular at
a=a,=1. Consider first the crossing energy e;. Two
competing effects have to be taken into account. As
a—a,, the energy difference between the bound phases
and the unbound phase vanishes as (@, —a)? (Sec. IIT A),
however, at the same time the segments of the polymer
that cross the strip tend to align with the walls. To see
this, let ¢ denote the angle enclosed by these crossing seg-
ments and the wall. Then the length of a segment is
L,=L /¢ for small ¢, and hence e, =(a,—a)*/¢. To
determine ¢, we note that the tilting of the crossing seg-
ment relative to the average direction of the polymer
incurs an elastic energy cost of the order L2/L,=L¢ per
unit length [4]. Including this term into (4.5) and minim-
izing with respect to ¢ we find that ¢ vanishes as
¢~a,.—a. Therefore,

e ~a,—a. (4.8)

Next consider the effect of the unbinding transition on
the fluctuations in the bound phase, described by the
coefficient e,. We first recall that, in addition to the lo-
calization length £~(a,.—a) 2 (cf. Sec. III B), a diverg-
ing correlation length parallel to the walls,

§~8=0"~(a,—a)”? 4.9)

can be associated with the unbinding transition [1]. Poly-
mer segments of length / <§, behave as in the unbound
phase. In particular, the ground state energy fluctuations
scale as ['' for I <§, where 6,=1 is the energy fluctua-
tion exponent of the free DPRM [3,5,7,8]; the simple /!/?
behavior of the fluctuations is recovered only on scales
1> §,. Matching the two power laws it follows that the
prefactor of the fluctuation term in (4.5) vanishes as

e,~E Vo ~(a,—a)'"?. (4.10)
Surprisingly, the combination e2 /e, that enters (4.4) and
(4.7) remains constant as a—a,. This is nicely consistent
with the exact results (3.13) and (3.10), which show that
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the coefficient of the 1/L confinement energy remains
finite upon approaching the transition, while the prefac-
tor of the coexistence correlation length &~ |a—p| !
diverges as (@, —a)~! [compare (3.10) with (4.4)].

Finally, it is instructive to apply similar arguments to a
thermally excited directed polymer (or interface) confined
between two equally attractive walls. Here the incentive
for the configuration to switch from one wall to the other
is of entropic origin. Consider a polymer of length ¢,
which forms N kinks of length L, with t=NL,. The po-
sitional entropy of the array of kinks is

S=ky 1n(r”/N!)szLL"(1nL“+1). (4.11)

Together with the energy cost ¥ L per kink the total free
energy is

(4.12)

Minimizing with respect to L, yields an exponentially
diverging correlation length

L/k, T
S (4.13)

Ly~e
which agrees (up to prefactors that the present approach
to too crude to capture) with detailed calculations [20] as
well as general properties of zero temperature phase tran-
sitions in one dimension. Inserting this into (4.12) one
finds an attractive confinement free energy per unit
length,

—yL/kgT

Af ~—kpTe 4.14)

as derived in (3.20). Related considerations can be used
to obtain the logarithmically diverging length scale £ [Eq.
(3.21)] characterizing the approach to criticality, along
with a parallel correlation length

vE/kg T _ |

L"ze IL_lo|_l ) (4.15)

which is the thermal analogue of (4.3).

C. Higher dimensions

The scaling arguments developed in the previous sec-
tion are readily extended to higher dimensions. Consider
first a directed polymer in d transverse dimensions
confined between two parallel d-dimensional hyperplanes
with average energies —1/a and —1/B. To treat the d-
dimensional case, we only need to modify the
fluctuation-induced energy gain in the kink energy esti-
mate (4.2). Since the localized polymer is free to optimize
its configuration parallel to the hyperplane, the energy
fluctuations are reduced to L f", where 6=0,_, < is the
energy fluctuation exponent of a DPRM in d —1 trans-
verse dimensions [5]. Repeating the arguments following
Eq. (4.2), we find that the approach to the coexistence
line is characterized by two diverging length scales

Ly~la=Bl L, ~|la—Bl ™, (4.16)

with the scaling exponents

6 ,n
1—6""1" 6
Similarly the (negative) confinement energy at coexistence

scales as

v, = (4.17)

—1/v,

—Ae~L (4.18)

The one-dimensional exponents are recovered by setting
0=1. In d =2, the value 6=6,=1 is known to be exact
[5,8], and results in vl=%,v"=%. We may also note that
the behavior in the thermal case can be viewed as the lim-
iting case 6=0 (no energy fluctuations) of (4.17): Then
L, diverges logarithmically, L”~‘a—B|'1 and Ae be-
comes exponentially small in L.

To illustrate some alternative confinement geometries,
we focus on the physically most relevant case of d =2
transverse dimensions. Consider, e.g., a polymer
confined to a tube of radius L. If the tube wall is
sufficiently attractive, the polymer can explore the whole
surface of the tube without traversing its inside; the
switching phenomenon observed in d =1 is absent. Con-
sequently, the confinement energy is that of a polymer in
d =1 with periodic boundary conditions, i.e., Ae ~1/L
with a positive coefficient. On the other hand, if the wall
of the tube is repulsive, the general result Ae ~L "7 is ex-
pected to apply, with 7=2(1—¢)/£=1.23 [5,21] ind =2
(cf. Sec. III B). The same scaling holds for a polymer
confined between two infinite repulsive planes.

We summarize these findings within the context of
two-dimensional moving interfaces governed by the
Kardar-Parisi-Zhang equation (2.19) [24]. Consider first
an interface of lateral extension L,=L,=L. If the
growth rate at the boundary is enhanced, the finite size
correction to the overall growth velocity is positive and
scales as L%, as in the case of periodic boundary condi-
tions [21]. If the growth rate is reduced at the boundaries
the correction scales instead as L ™. Finally, if L, << Ly
and the growth rate at the long sides is reduced, the

. . — /v —
correction becomes negative and scalesas L, =~ ‘=L, %

V. CONCLUSIONS AND OUTLOOK

Let us then recapitulate the main achievements of this
work. Building upon the exact solution of the lattice gas
problem due to Derrida, Domany, and co-workers
[13-15], we have provided a detailed description of the
unbinding of the (1+ 1)-dimensional DPRM from an at-
tractive wall. The predictions obtained previously by the
replica method [1,17] were confirmed, and additional
features such as the appearance of a diverging correlation
length on the unbound side of the transition, and the ex-
act scaling form for the confinement energies, were
found.

Guided by the occurrence of shock fluctuations in the
lattice-gas model, we were further led to discover a novel
type of critical phenomenon associated with the coex-
istence of two energetically degenerate bound phases.
These coexistence fluctuations are unique to the confined
geometry considered in this paper, and they are driven by
the quenched disorder near the localizing boundaries.
Compared to the effect of thermal fluctuations in the
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same situation, the boundary disorder dramatically
enhances the rate at which the directed polymer switches
between the two bound phases: Rather than being ex-
ponentially small in the wall separation, it decays as an
inverse power of L. We expect effects of this kind to be
important for the behavior of flux line arrays in type II
superconductors subject to both point disorder and ex-
tended defects [6]. Indeed, the hopping of vortices be-
tween defects of comparable energy is known to play a
central role for the transport properties of these materials
[34].

While our scaling picture for the coexistence fluctua-
tions was easily extended to higher dimensions (Sec.
IV C), we have little to say about the properties of the un-
binding transition, such as the value of the unbinding ex-
ponent 1, in transverse dimensionalities d > 1. Neverthe-
less, some insight can be gained from reexamining the
steps that lead to the exact result =2 in d =1. In fact,
this result is already inherent in the thermodynamics of
the transition, discussed in Sec. III A, when combined
with some simple scaling considerations. It is clear that
the confinement of the polymer to the lateral length scale
£ in the bound phase incurs an excess energy per unit
length of order £~ 7, which has to be compensated by the
attractive wall potential. If £~ |a, —a| ¥ when a—a,,
it follows that the singular part of the energy vanishes as
la,—a|¥". Thus the quadratic behavior of the (macro-
scopic) ground state energy per unit length, together with
the confinement energy exponent 7=1, implies that
Y=2/7=2. In general 7=2(1—¢)/¢&, and hence the as-
sumption that ¥y7=2 implies the necklace model predic-
tion [27]

y=t
1-¢

How general is the quadratic singularity of the ground
state energy at the unbinding transition? It is instructive
to recast this question in the language of interfaces evolv-
ing according to the KPZ equation (2.19). Specifically,
consider a d-dimensional interface in a semi-infinite
geometry which experiences a reduced growth rate [24]
along the (d —1)-dimensional boundary. The unbinding
transition corresponds to a transition from a (“bound”)
phase where the retardation at the boundary is sufficient
to macroscopically tilt the interface, to a phase where the
interface is oriented horizontally; the ground state energy
singularity translates into the singularity of the growth
rate (Sec. II). As a consequence of the Galilean invari-
ance of the KPZ equation [4,9], the change in growth
rate due to an imposed (small) tilt is always quadratic in
the tilt, a statement that holds for arbitrary d. To be able
to conclude that ¥7=2 in general, we would further have
to argue that the interface tilt in the bound phase varies
linearly with the (bare) boundary growth rate a,—a.
This is quite obviously the case in d =1, and can be most
easily verified in the lattice gas representation, where it
implies that the boundary parameters a and B directly
control the boundary densities [12]. However, this sim-
ple scenario may well be due to the fluctuation-
dissipation theorem (FDT) for the one-dimensional KPZ
equation [5,7,9], which ensures short-range spatial corre-

(5.1)

lations of the interface gradient (equivalently the lattice
gas density). It is conceivable that the absence of an FDT
in higher dimensions leads to a nontrival dependence of
the interface tilt on the boundary potential and, there-
fore, to a value of the unbinding exponent that differs

from (5.1). We hope to clarify this point in the near fu-

ture.
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APPENDIX

In this appendix we derive expressions for the ground
state energy per unit length e, which can be used to ex-
tract the leading-order finite-size corrections in the three
different phases and on the phase boundaries.

From the mapping discussed in Sec. IT we have

eo(L)=—'%JL__11 N (Al)
where [Eq. (57) of Ref. [14]]
_ (wilc¥v)
Jol= LAV (A2)
Yo (wch )

is the inverse of the stationary lattice-gas current in a sys-
tem of N sites.

To compute the matrix elements in (A2), we follow the
discussion in Appendix B of Ref. [14]. There, an expres-
sion for { W|C™|V') [Eq. (B10) of Ref. [14], hereafter re-
ferred to as Eq. (DEHP:B10); other equations in this
reference will be cited in a similar way] was given explic-
itly only fora=a"!—1<1and b=B"'—1<1. For oth-
er values of @ and b, one has to perform proper analytic
continuations of (DEHP:B6) and (DEHP:B8). The first
one is simple: writing z=e"%, the integral in (DEHP:B6)
is transformed to an integral over the unit circle on the
complex z plane. The integrand has three poles, two sim-
ple poles at z =b and 1/b, and a third pole at the origin.
It is easy to show that, in order for the integral to be
equal to b*~! in general, the integration contour S
should enclose z =0 and b but not 1/b. For z away from
the unit circle, the proper extension of (DEHP:B3) is to
replace sink @ with (z¥—z %) /(2i). In this form, the sum
(DEHP:B8) converges to

1 _ 1
z7l—qg

-1
L,(z)= 2 (A3)

zZ—a

provided a <min{|z|,|z|~!}. Thus, the contour S should
enclose also z =a but not z =1/a4. Summarizing, we have

a+p—1

(WIC”IV>=—aB—§SSdsz(z) , (A%)
where
fN(Z)=—L. z(z—z )22 +z+z W .
4mi ab(z —a)(z —a "Nz —b)z—b"")
(A5)
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The integration contour S encloses z =0 and two of the
simple poles of fy at z=a and b, but not the ones at
z=qg land b~ L

To evaluate (A4) in the limit of large N, we rewrite the
integral as

a+p—1

(w|cMyv)= B [I,(N)+I,(N)+I(N)], (A6)
where
Ln=[" do sin’6[2(1+cos0) ¥ ,
: ~= 7 (1—2a cosf+a?)(1—2b cosf+b?) ’
(A7)
0, ifa<l(@>1),
= 8
LM ﬁsldz fN(z)—ﬁszdsz(z), otherwise; AY)
0, f bS1BZ1L),
= A9
I;(N) ¢s3dsz(Z)_¢Sadsz(Z)’ otherwise. (49)

Here S, S,, S;, and S, are closed contours, each enclos-
ing only a single pole at z=a, a !, b, and b ~!, respec-
tively. Using the residue theorem, the integrals in (A8)
and (A9) can be easily evaluated. The results are given
by, for a7B,1—p,

(1—2a)a?B?

= —_ -N-—1 1
I,(N) (B-—a)(a+B—l)[a(1 a)l , (@<i),
(A10)

_ 22
Ln=—1=28aB g, _pgy-v-1 (g<l.

(a—Bla+B—1)

(A11)

Consider now Eq. (A7). For N >>1, the integrand is

peaked at 6=0, with a width of order N "!/2 and ex-

ponential tails at |8| > N ~!/2, Expanding sinf and cos6

around =0 and keeping only terms up to second order
in suitable form, we obtain

L~ [~ 48

—o T

6%4" exp(— 1N6?)
[(1—a)*+a@*][(1—b)*+b6?]
(A12)

The correction to (A12) is by a factor N ~! smaller. Set-
ting

. N(1—a) _ N(1—2a)?
4a 4a(l1—a)

u (A13)

and

p2= N(A=b? _ N(1-2B)

4b 4B(1—B) ’ (Al

Eq. (A12) can be rewritten as
zaZBZ

~ —1/24N _
I1,(N)= (G‘B)(OH“B—I)N 4"[F(u)—F(v)],
(A15)
where
_ 2> dy 2
F(x)=x f —= exp(—y~) . (A16)

—w 1T x2+y2

The integral on the right-hand side of (A16) can be ex-
pressed in terms of the error function by making the sub-
stitution

1

—_— (A17)
x2+y?

= fowds exp[ —s(x%+y?)].

Carrying out the integration over y and some elementary
manipulations we obtain

F(x)=|x|exp(x?)[1—erf(|x])], (A18)
where
__2 rx .2
erf(x) == [ "dy exp(—y?) . (A19)
The limiting behaviors of F (x) are given by
Ix| +0(x2), x—0; (A20)
FOZI L o 1x240:79)], x— . (A21)
v
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FIG. 5. Sketch of a kink excitation of a polymer bound at the
(slightly more attractive) left wall.



